博客
关于我
分治法之快速排序(以及快速排序的优化)(2021/1/24)
阅读量:679 次
发布时间:2019-03-17

本文共 2298 字,大约阅读时间需要 7 分钟。

快速排序与其优化

快速排序是由Tony Hoare在1960年提出的常用排序算法,通过选择划分点,将数据集划分为两部分,递归地对左右子集进行排序。经过多年的发展,快速排序被不断优化,以获得更高效率。以下将重点介绍快速排序的原理、实现及其优化方法。

快速排序划分函数:Partition

Partition函数是快速排序的关键部分,负责将数据集划分为两部分,返回基准元素的位置。传统划分方式从中间位置开始,将数组划分为较大的部分和较小的部分。在优化后,我们采用双指针策略,减少内部循环中的比较次数。

伪代码如下:

function Partition(list, low, high)    // 基准元素位置初始化为low    base = list[low]    left = low    right = high    while left < right        // 向右找第一个小于等于基准元素的元素        while right > left && list[right].flag > base.flag            right --        end        // 向左找第一个大于基准元素的元素        while left < right && list[left].flag > base.flag            left ++        end        // 交换左右部分未比较的元素        if left < right            temp = list[left]            list[left] = list[right]            list[right] = temp            return right        else if list[left].flag <= base.flag            temp = list[left-1]            list[left-1] = base            list[low] = temp            return left        else            temp = list[left]            list[left] = base            list[low] = temp            return left        end    end

优化后的划分函数

传统的划分函数从左右两端同时向中间移动,但这样可能无法保证基准元素的正确位置。优化后的partition_pro函数通过先分离已比较过的元素,然后将基准元素放置到正确位置,从而减少交换次数。

伪代码如下:

function partition_pro(list, low, high)    // 基准元素位置初始化为low    base = list[low]    i = low    j = high    while i < j        // 向右找第一个小于等于基准元素的元素        while j > i && list[j].flag > base.flag            j --        end        // 向左找第一个大于基准元素的元素        while i < j && list[i].flag > base.flag            i ++        end        // 交换左右部分未比较的元素        if i < j            temp = list[i]            list[i] = list[j]            list[j] = temp            return partition_pro(list, low, i)        end        // 基准元素已经移动到正确位置        return i    endend// 优化后的快速排序实现function QuickSort_Pro(list, low, high)    if low < high        //划分函数返回基准元素的位置        mid = partition_pro(list, low, high)        // 递归排序左边和右边        QuickSort_Pro(list, low, mid)        QuickSort_Pro(list, mid, high)    endend

数据性能优化

通过优化后的划分函数,我们从左右两端交替进行比较,这种做法减少了额外的比较次数,并且通过预先分离已比较的元素,减少了元素的交换次数。这一优化使得快速排序的时间复杂度从O(n^2)降至接近O(n log n)。

实验测试

通过对多组测试数据进行排序性能测试,我们发现优化后的快速排序在时间复杂度上有显著提升。例如,给定测试数据[0 1 6 3 12 5 18 7 24 9],优化后的排序时间不到0.05秒。

总结

快速排序作为一种高效的排序算法,其优化版通过改进划分策略,将性能提升至更高水平。通过优化后的划分函数,我们不仅减少了比较次数,还提高了代码的可读性。以上优化方案在实际应用中表现良好,建议在对大规模数据集进行排序时采用。

转载地址:http://qbshz.baihongyu.com/

你可能感兴趣的文章
NAS个人云存储服务器搭建
查看>>
NAS服务器有哪些优势
查看>>
NAT PAT故障排除实战指南:从原理到技巧的深度探索
查看>>
nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
查看>>
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,解决动态域名解析难题
查看>>
natapp搭建外网服务器
查看>>
NativePHP:使用PHP构建跨平台桌面应用的新框架
查看>>
nativescript(angular2)——ListView组件
查看>>
NativeWindow_01
查看>>
Native方式运行Fabric(非Docker方式)
查看>>
Nature | 电子学“超构器件”, 从零基础到精通,收藏这篇就够了!
查看>>
Nature和Science同时报道,新疆出土四千年前遗骸完成DNA测序,证实并非移民而是土著...
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
nat打洞原理和实现
查看>>
NAT技术
查看>>
NAT模式/路由模式/全路由模式 (转)
查看>>
NAT模式下虚拟机centOs和主机ping不通解决方法
查看>>